Pushing the limit for the grid-based treatment of Schrödinger's equation: a sparse Numerov approach for one, two and three dimensional quantum problems.
نویسندگان
چکیده
The general Numerov method employed to numerically solve ordinary differential equations of second order was adapted with a special focus on solving Schrödinger's equation. By formulating a hierarchy of novel stencil expressions for the numerical treatment of the Laplace operator in one, two and three dimensions the method could not only be simplified over the standard Numerov scheme. The improved framework enables the natural use of matrix sparsity to reduce the memory demand and the associated computing time, thus enabling the application of the method to larger problems. The performance of the adapted method is demonstrated using exemplary harmonic and Morse problems in one and two dimensions. Furthermore, the vibrational frequencies of molecular hydrogen and water are calculated, inherently considering the influence of anharmonicity, mode-mode coupling and nuclear quantum effects. The estimation of the tunneling splitting in malonaldehyde serves as an example for a two-dimensional problem.
منابع مشابه
When the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملCubic spline Numerov type approach for solution of Helmholtz equation
We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 46 شماره
صفحات -
تاریخ انتشار 2016